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The method of rational thermodynamics according to Truesdell was applied to a reacting fluid 
mixture. The conservation laws of mass, momentum and its moment, energy, and the second law 
of thermodynamics were postulated. The model of the material was defined by constitutive equa-
tions linear in the vector and tensor variables so as to enable a comparison with classical thermo-
dynamic theories. The constitutive equations are reduced to the final form by the principles of the 
constitutive theory: objectivity (independence of the material on the observer) and admissibility 
(use of the second law of thermodynamics according to Coleman and Noll). Their finite form 
is linear in the transport properties; the transport coefficients in them and the constitutive equa-
tions for thermodynamic properties and chemical reaction rates are nonlinear functions only of 
temperatures and densities. The constitutive equations are not mutually independent — the free 
energy determines the entropy and one kind of transport coefficients but not generally the pressure. 

Rational thermodynamics, based on a critical revision of the continuum thermo-
mechanics by the school of Truesdell, Coleman and Nol l 1 - 4 , has been applied to 
chemically reacting mixtures5-9 under certain restrictions, e.g., absence of diffusion6 

or absence of viscosity effects7 - 9 . In the present work we shall consider all such 
phenomena but we shall restrict ourselves to chemically reacting fluid mixtures 
that are linear in the transport properties (such as viscosity, heat conduction, dif-
fusion, and cross effects), i.e., the classical case of the thermodynamics of irreversible 
processes. This will make it possible to compare explicitly the results obtained from 
rational thermodynamics with those from the thermodynamics of irreversible proces-
ses and thermochemistry of mixtures10. 

The rational thermodynamics is an axiomatic and phenomenological theory 
(i.e., it does not make use of a molecular model). First the general laws are postulated: 
the conservation laws (of mass, momentum, moment of momentum, and energy) 
and the second law of thermodynamics. Further are postulated the constitutive 
equations defining the model of the material. Their formulation and further rearrange-
ment is based on the principles of the theory of constitutive equations1 - 4 : deter-
minism, local action, memory, equipresence, objectivity, and admissibility. The 
obtained constitutive equations in the definitive form and relations among them 
involve linear equations of transport phenomena and nonlinear relations for thermo-
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dynamic quantities and rates of chemical conversions. Contrary to nonreacting 
mixtures, the pressure is generally not determined only by thermodynamic quantities. 

The present study is a continuation of the preceding work about nonreacting 
fluid mixtures11 '12. Vector and tensor equations are written in the component form 
in a cartesian coordinate system, which is expressed by subscripts i, j, k, I, etc., and 
the validity of the summation convention is assumed for them. The mixture consti-
tuents are denoted by superscripts a, /?, y, etc. 

General Postulates 

The following quantities are a priori introduced in the case of a reacting mixture 
with n constituents: 

t time 
Xi radius vector of the observer's coordinates 
v\ velocity of constituent a; a = 1, 2, ..., n 
qx density of constituent a, ga > 0 
ra mass source of constituent a (in unit volume per unit time) by chemical 

conversions 
T temperature, T> 0 
ua partial free energy of constituent a 
sa partial entropy of constituent a 
Jx heat flux 
R heat source (for example by radiation) 
fc" force by which (in unit volume) other constituents act upon the constituent a 

partial stress tensor of constituent a 
F" volume force acting upon constituent a 
a production of entropy 

On the basis of the Truesdell's concept of mixture 1 3 - 1 5 the general postulates can 
be formulated in the local form as follows: Conservation of mass of the mixture 
constituent a 

dQ
a d(fv« 

— + — — = r , a = 1, 2, ..., n, (1) 
ot oxi 

conservation of mass of the mixture 

ii<r + j-i<r<t = o. W 
Ot c t = l (7Xj a = 1 
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conservation of momentum of the mixture constituent a 

L + * 1 J - —^ + q*F? + + rav1, ( 3 ) 
dt dXj dX) 

a = 1, 2, . . . , n 

conservation of momentum of the mixture 

£ i Q*v i + J - i E ^ + i (4) 
Ot « = 1 OX) o = l OXj«=l 0= 1 

and conservation of moment of momentum of the constituent a 

+ = + + + > M 

a — 1, 2, . . . , n 

dt dx-} dx; 

where e lki is a permutation symbol. In this way we restrict ourselves to such mixture 
constituents which do not exchange their moment of momentum among themselves 
(so-called nonpolar constituents). 

Conservation of moment of momentum of the mixture is postulated as a sum of 
Eqs (5) over all constituents (a = 1 ,2 , . . . , « ) . 

Conservation of total energy of the mixture 

- f £ {q*u° + iQ*v°vf) + J t £ (q*u* + iQ*v°v«) v) = 
Ota=1 OXj0=1 

fl n 8 T n 

= J - I W i - + R + X (6) 
0X^=1 OX J 0 = 1 

and finally we postulate the second law of thermodynamics in the form of the 
Clausius-Duhem inequality 

+ + (7) 
o=i ot o = i ox; cbcj \ 7 y T 

Energy and entropy balances for the mixture constituents are not necessary since 
this study is restricted to mixtures with equal temperature of its constituents1. 

With the aid of Eqs (l) and (2) the mass conservation of the mixture can be ex-
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pressed in the equivalent from 

t r ° = 0 (8) 
0 = 1 

and analogously from Eqs (3) and (4) follows the equivalent expression for the 
conservation of momentum of the mixture 

f (k? + r*v*) = 0 . (9) 
a = 1 

Eq. (3) multiplied vectorially by xk gives after comparing with (5) the equivalent 
expression for the conservation of moment of momentum of the constituent a, 

T{) = T? . a = 1, 2, ..., n (10) 

The analogous conservation of moment of momentum of the mixture is given as the 
sum of (10) over all constituents a = 1, 2, .. . , n. Finally, by subtracting the kinetic 
energy balance (which is obtained by multiplying Eq. (3) by the velocities and summing 
over all mixture constituents) from the total energy balance (6) and using (l) we 
obtain the conservation of energy of the mixture as the internal energy balance: 

n dn^u* n dnau*na. n AT- n n 1 

Y °JUL + Y, ^ = E T ^ - ^ + Jt - I vW -Zir'v'v*. (11) 
o = i at a = i OX) o = i ox j 0Xi o = i o = i 

We shall use further these postulates in the independent forms (1), (3), (7) — (11). 

Constitutive Equations 

Even if we assume that the values of R and i7" are given beforehand and if we deter-
mine the quantities rn, k a and the three components T^ from Eqs (7) — (10), the 
remaining differential equations (l), (3) and (11) are not sufficient to determine the 
quantities involved in them as functions of and t. The reason is that the general 
postulates do not distinguish among individual materials; the differences between them 
are taken into account in constitutive equat ions 1 - 4 ' 1 3 by which we supplement the 
missing relations. By their postulation, we define the model of the material emphasizing 
such features of the real material which are important under the studied conditions. 
We propose the constitutive equations and modify them according to the principles 
of the theory of constitutive equations1 - 4 . 

For our n-constituent, chemically reacting mixture of fluids we postulate the 
constitutive equations as follows1 '5 '9: The quantities 

rp, u\ s\ k\, Tjj (symmetrical) (12) 
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are functions of the independent variables 

„ a dT dQa „ dvJ T>Q*7r'ir>v"*r-
OXj OX; OXj 

with a = 1, 2, . . . , n, P = 1, 2, ..., n — 1, and the dependence on the vectors and 
tensors in (13) is linear. 

The condition of linearity is introduced for simplicity and for the possibility of 
a direct comparison with linear themodynamics of irreversible processes; it is not 
usual, but on the other hand the published studies of chemically reacting mixtures 
ommit in the group (13) the quantities dgajcbq, v\ (materials without diffusion)5 , 6 

or dv^/dxj (materials without viscosi ty)7 - 9 . 

The following principles of the constitutive theory were made use of in the above 
formulation of the constitutive equa t i ons 1 - 4 : 

Determinism — all independent variables (13) follow from a present or past motion 
and deformation of the material and temperature field. Fluids are characterized by 
the fac t 2 , 4 that the deformation gradient can be expressed as a function only of the 
densities Qa. Strictly speaking, this applies exactly in chemically nonreacting mixtures; 
in chemically reacting mixtures of fluids still another quantity characterizing the 
deformation is introduced besides (ref.7, Eq. 8.8) to express the mentioned depen-
dence. For simplicity of our material model we assume that this quantity is not in-
volved among the independent variables (13). 

Local action — only the immediate surroundings has an influence on the dependent 
variables (12), which is manifested by the presence of space gradients in (13). 

Memory — only the immediate past has an influence on the dependent variables 
(12); therefore the quantities and dv\jdx-} are present in (13). 

Equipresence — in all constitutive equations for the quantities (12) the same 
independent variables (13) are involved, hence no constitutive equation is preferred 
against others in their postulation. 

We shall modify the constitutive equations between the quantities (12) and (13) 
by using further principles of the constitutive theory — principles of objectivity 
and admissiblity. 

Objectivity (material f rame indifference)1 ~4 requires that the constitutive equations 
(i.e., the properties of the material) be independent of the motion of the coordinate 
system and origin of the time scale. As a result of this principle, the last two variables 
in (13) can occur in the constitutive equations for the quantities (12) only in the 
following combinations1 6 (otherwise the objectivity would not be fulfilled for two 
observers moving with respect to the material with different velocities of translation 
or rotation): 
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The diffusion rate of constituent |3 

V? = vf - w? , P = l , 2 , . . . , n - l , (14) 

the partial deformation rate tensor for constituent a 

d > > = 2 - 1 - 2 - - " ( » ) 

and the partial relative spin tensor of constituent /? 

2 J 

Further it follows from the objectivity principle that the constitutive equations must 
be isotropic functions with respect to a full orthogonal group of coordinate transform-
ation since the material properties must not depend on rotation or inversion of the 
coordinate axes of the observer. The form of such functions is for our constitutive 
equations (12) — (16) given by the results of Smith17 and is considerably reduced by 
the assumed linearity as follows5 , 1 6 '1 8: 

rH 
= rfo, + I r ^ d ] , , (17) 

r = i 

= «Jo) + I K f r ) d l i , (18) 
y=l 

S* = si0) + £ s^L , (/9) 
7=1 

?)T n - 1 n fin* 
j ^ - H ^ - Z W + z f f - , (20) 

OX J (5=1 a = 1 tfX; 

r)T n _ 1 n r)ny 

k\ = - Y t V ^ V ? + ^<0* — , (21) 
dXi 5 = i y = i dx{ 

T * = + £ C d l ^ + £ 2 r j ^ J . (22) 
Y=1 r=l 

We assume throughout that a,y = 1 , 2 , n and /?, <5 = 1, 2 , « — 1. All the 
coefficients rf0), rfY„ uj0), <Y)> s<o>> S(Y), x, vps, o/y , na, CY, and ^ are functions 
only of T, q1, q2, . . . , Su denotes unit tensor, d£k trace of the tensor djj} and d? ] 
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its divergenceless part defined as 

d-J = d]i - | dlkSi}, y = 1, 2 , n . (23) 

In the case of nonpolar constituents, where Eq. (10) holds, the quantities (72) are 
not linearly dependent upon (Eq. (16)) (c/.1 6 , 1 8). 

Further it is advantageous to define the partial free energy of the constituent a 

fa — ua — Ts*, a = 1 , 2 , . . . , « . (24) 

The corresponding constitutive equation can be obtained by combining Eqs (75) 
and (19): 

r =/ (
ao) + t f i y A ' d = l,2,...,n, (25) 

y = l 

where we define the following quantities: 

/(0) = "(0) - Ts(0)J(y) = "(Y) ~ Ts«{y), cc, y = 1, 2, ..., n , (26), (27) 

which are obviously functions only of T, q1, q2, ..Qa. In further text we shall denote 
such functions by the sign A over the corresponding symbol, for example 

flo) = fw{T, q\q2,..., Qn) = /(
a

0)(T, (>') , a, y = 1, 2, . . n . (28) 

Finally we shall use the admissibility principle (after Coleman and Noll19) to 
obtain the resulting form of the constitutive equations: These must be consistent 
with the general postulates, especially with the Clausius-Duhem inequality (7) for 
arbitrary motion and deformations of the material and temperature field. To this 
purpose, we introduce the internal energy balance (77) into the Clausius-Duhem 
inequality (7) to eliminate the term dJ^dx^ — R. (In the derivation of Eq. (77) we 
used already (7) and (3)). We modify the obtained expression by using the definitions 
(24) (we eliminate the partial internal energy ua) and (23). Further we use all remaining 
relations (8) —(10) expressing the conservation laws and introduce the constitutive 
equations (77), (79)-(22) and (25) into the obtained inequality. After a longer 
rearrangement we obtain 

I E 
r n _ 1 n ' d e ' f t o ) O Q % } 

l _ p = i « = i \ dQ dQa 

+ L I V I - e ' / J , - - I I - ^ l 2 ) 4 
r = l L a = 1 dgy P = l a = l \ SqP 3qa J 

r(0) 
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k k ) <Y,J " M W f w ] 3, + 

+ Z V i z <5pY - - copYl ViP — -
v = ip=i («=i dgy dQy J 1 dx{ 

- l . g i s s 

- E { E + «•«&,)} <ru%- E I w , , } i f ^ -
r = i [ « = i \ dT J J dr v = i p = i 

E'C"1" - Ko)'5"5] V M 
_ T J OXj OX; P = 1 8 = 1 

- t | Z e V ? „ } » ? f 5 i + Y = 1 (« = 1 J CX; 

n-1 r ip 
+ I Mr + ~ 

p=I L T 

n — 1 n 

^pcP 
8T 

— Q A(0) 

d Q % ) dQafty) 

. de> dgn . 
I'.d': + 

+ E E [ a n <flKr + E E "E { E ^ - -
a = 1 y = 1 e=l y=l P=1 (a=l OQp OQ J OX; 

- I E + A B J W ^ - £ °E {irfr,} vfrfdi, -
P = l y = l { 01 J OXj y = 1 P = 1 

(<5pY denotes the Kronecker delta; we define (5pn = 0 for /? = 1, 2, n — l) . 

According to the admissibility principle the inequality (29) must apply for all 
motions and deformations of the material and temperature fields, i.e., for all real 
values of the following independent quantities: 

dJL dJL dJl Fp d« do« W i ( 3 0) 
at dXi ox{ dt oxi 

at any values T > 0, ga > 0 (a = 1,2,..., n, ft = 1, 2,..., n — 1), on which the 
terms in parentheses in (29) are solely dependent. Then it is sufficient and necessary 
that the terms in composite parentheses be equal to zero. The sufficiency is obvious 
and the necessity follows by contradiction: If these expressions were not equal to 

Collect ion Czechoslov. Chem. Commun. [Vol. 40] [1975; 



Rational Thermodynamics of a Reacting Mixture 3417 

zero, it would be possible to find such real values of the quantities ( 3 0 ) ( i . e . , such 
motion or deformation of the material and temperature fields) at which the inequality 
(29) would be invalid. 

The nullity of the terms in composite parentheses in (29) implies the following 
equations: 

/ (
a

Y ) = 0 , 5 ° y ) = 0 , r f y ) = 0 , f = 0 , ( 3 1 ) - ( 3 4 ) 

n r ) n a f a n 

I ~ r + E e v m = o (35) 
a = 1 01 a = 1 

^ ^ ( t e V f . , ) - ^ - " " , (36) 
OQ1 a =1 OQ1 

where again a, y = 1, 2 , n , /? = 1, 2, ..., n — 1, and the inequality (29) takes the 
form 

= i - r f o , + I « + 
p = l o = l \ O Q p OQ J y = l 

+ t i n ^ + i i + 
e = 1 y = l a = l y = l 

+ " s " z [ v p 5 - i r f 0 ) n + £ V ' ^ + ( 3 7 ) 
p = i 5=1 p=i o x { T \ o x - J 

Here we use the definitions 

n S ^ a f o t 

P y = Q y Yj ~ ~ ~ @yfy
 ~ ^ ' y = h 2 , . . . , n ( 3 8 ) 

a=1 OQy 

+ p = 1 , 2 , . . . , n — 1 ( 3 9 ) 

T d T 

(these quantities are again functions only of T , q * , q 2 , . . . , Q n ) . With the use of Eqs. 
(31) —(34) and with regard to (27) the constitutive equations take the final form 

= r \ T , q \ q 2 , . . . , Q n ) , s a = g * ( T , q \ q 2 , q n ) , ( 4 0 ) , ( 4 1 ) 

r = f \ T , q \ q 2 , . . . , Q n ) , u° = u a ( T , q \ q \ . . g " ) , ( 4 2 ) , ( 4 3 ) 

where a = 1, 2, n, (3 = 1 , 2 , ..., n — 1 (here and in further text we ommit the 
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subscript (0)), 

= (44) 
oxi p=i 

and the constitutive equations (21) and (22) do not change. The coefficients x (heat 
conductivity), , vp8, copY, 7ra (partial pressure), £ay (volume viscosity), and r f 
(viscosity) depend only on Tand q1, q2, ., gn. 

As a result of Eqs (35) and (36), the mentioned constitutive equations are not 
independent. Indeed, if we introduce the density of the mixture 

Q=tem, (45) 
«=i 

the mass fraction 
n 

w« = q«Iq, a = 1,2, ..., n; £ wa = 1 , (46) 
a = 1 

the specific free energy of the mixture 

/ = f>a/% (47) 
a=l 

the specific entropy of the mixture 

5 = £ wV , (48) 
a= 1 

and the specific che mical potential of the constituent a 

fi* = dQf/dQ* , a = 1,2, ..., n , (49) 

we can rewrite Eqs (35) and (36) in the form 

dfjdT = -s, coPr = - dQ*PldQy (50), (51) 

with ft = 1,2 , . . . , n — 1, y = 1 , 2 , n , and the definition (38) as 

lif=r + (? + PrW, 7 = 1, 2, n . (52) 

Finally for the principle of admissibility (the quantities (30) acquire independently 
all real values) the following inequalities and properties follow from the inequality 
(57): 
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x 12nayd?«d°y +ns "e [v^5 - ir^5] v?v* + 
a = 1 y = 1 p=l 6=1 

+ + (53) 
p = i dx{ T \dx-J 

This is a positively semidefinite quadratic form (hence follow inequalities for its 
coefficients according to the Sylvester theoreme). Further we have 

- i V - AO rP + i Pydl + f t ^ 0 ' M 
P=1 y = 1 o = 1 y= 1 

where the quadratic form is also positively semidefinite, and finally 

(55) 
p=i 

An important special case occurs for a nonreacting mixture (ra = 0; a = 1, 2, . . n ) 
where it follows from (54) according to the principle of admissibility 

p ' = 0 , y = 1,2, ...,n (56) 

(this case occurs also with a chemically reacting mixture for which £aa = 0, a = 1, 
2, ..., n, for example, a nonviscous mixture). In this way the definition (52) is reduced, 
to another relation joining the constitutive equations11 '12. This relation represents 
similarly as (50), the classical thermodynamic relations10. 

DISCUSSION 

The mixture of chemically reacting fluids (defined by constitutive equations (12) and 
(13)) studied from the point of view of rational thermodynamics yields equations for 
transport properties (partial stress tensor, heat flow and forces caused by the 
constituents of the mixture) in the form of Eqs (21), (22) and (44), which are linear 
as a result of the assumed linearity in (12) and (13). The relations (22) have the classical 
form corresponding to Newtonian fluids, Eqs (21) and (44) contain the diffusion 
velocities and therefore it is possible to obtain from them the classical linear relations 
for the diffusion and heat fluxes10 (the coefficients vp5 are related to the diffusion 
coefficients10; the inequalities vpp ^ 0 following from the quadratic form (53) 
represent a diffusion limit of the reaction rate and do not exclude the negative va-
lues of diffusion coefficients in reacting mixture). 

The right-hand sides of the constitutive equations for the thermodynamic quantities 
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(41) — (43) are (nonlinear) functions of temperature, T, and densities, Q* (a = 1, 
2 , n ) , and are joined by the classical thermodynamic relation (50). Similarly the 
coefficients in the transport relations (21), (22) and (44) are (nonlinear) functions only 
of Tand Qa, but only coPr (which play a role in the equilibria in external force fields10) 
are, according to (51), determined by the thermodynamic constitutive equations (42). 
These (as mentioned in the discussion of a special case (56)) do not determine the 

n 
partial pressure ny and hence they do not determine the total pressure ]>] ny either. 

y = l 

It will be shown in a subsequent work10 that it is possible to obtain the classical 
thermodynamic equations from the mentioned ones by suitable definitions and by 
the use of a certain form in variance of the starting postulates. 

The constitutive equations for the rate of chemical conversions (40) are generally 
nonlinear functions only of temperature, T, and densities, Qa; they do not depend any 
more on the trace of the partial tensors of the deformation rate (since Eqs (33) hold). 
We shall show10 that this fact leads to a generally nonlinear dependence of the 
chemical reaction rates on the affinities and to the nonexistence of the cross effect 
between chemical reactions and linear friction. 
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